
C₂H₄ detection in SiH₄ purification using TDLS

A.Kotkov, N.Grishnova, D.Polezhaev, O.Anoshin, A.Skosyrev

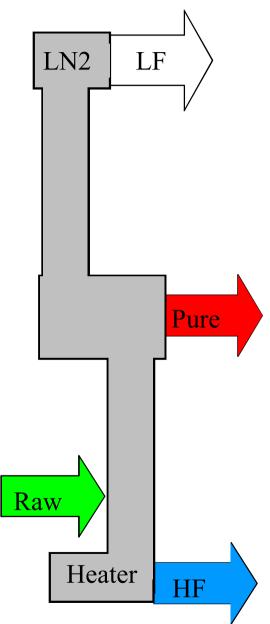
Scientific-industrial enterprise "Salut" 603950, Larina Str. 7, Nizhnii Novgorod, Russia Scientific-Industrial Enterprise SALUT

A.Nadezhdinskii, Ia.Ponurovskiy, I.Popov, Yu.Shapovalov

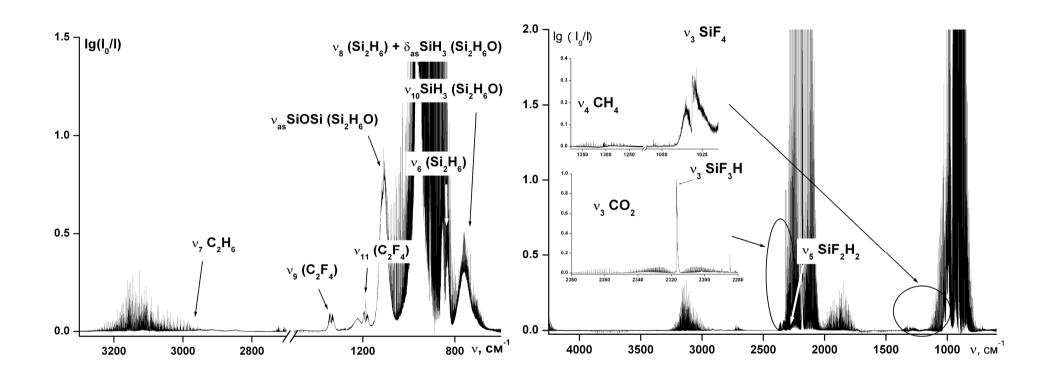
A. M. Prokhorov General Physics Institute of RAS 38 Vavilov str., 119991 Moscow, Russia. E-mail: Nad@nsc.gpi.ru

Introduction

SiH₄ is main source to produce Si of highest purity necessary for modern electronics. Requirements for SiH₄ purity: concentration of electrically active impurities (B, P, As, AI) < 10^{-9} %, and for gaseous impurities < 10^{-5} - 10^{-6} %. To produce high purity SiH₄ low temperature rectification is using.


Volatile hydrides (diboran, arsine, phosphine) sources of electrically active impurities have physical – chemical properties close to SiH₄. As result it is difficult both to remove and control them during rectification process. Due to the problem mentioned above SiH₄ purification efficiency can be controlled by C_2H_4 having in purification process under consideration separation factor close to 1 (1.26).

Goal of present work: to development apparatus and technique for ethylene detection in silane with detection limit 1 ppm.



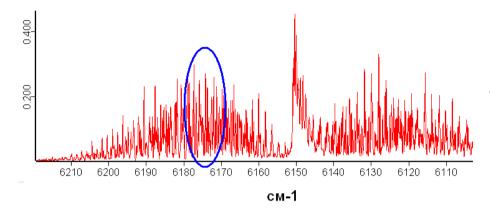
Rectification column

Rectification column view and diagram. Raw material is loaded in rectification column. Due to heater and LN2 cooling condensation evaporation processes took place inside column. As result impurities are concentrated at bottom (Heavy Fraction - HF) and upper (Light Fraction - LF) parts of rectification column. Central part - pure material.

Impurities

FTS spectra (resolution 0.01 cm⁻¹) of HF - Heavy Fraction (left) and LF - Light Fraction (right) with impurities absorption bands identification.

P = 30 mBar, L = 20 cm.

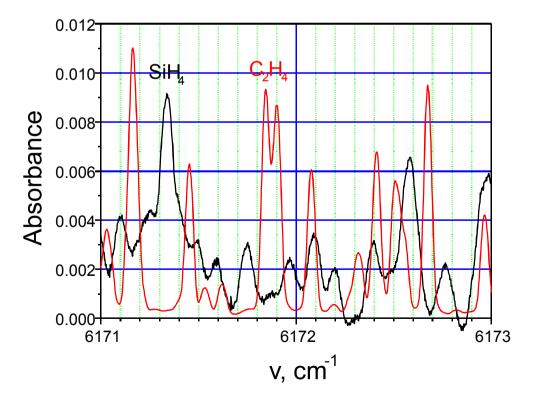

Ethylene selection as indicator

	T _b , ^o C						
SiH ₄	-111.6						
LF	T _b , ^o C	SF	SF exp.	HF	T _b , ^o C	SF	SF exp.
CH ₄	-161,4	16	15,3	C ₂ H ₄	-103,5	1,68	1,26
SiF ₄	-91			C_2H_6	-88,5	4,24	3,2
SiHF ₃	-			B ₂ H ₆	-92,4		1,37
SiH ₃ F	-97.5			PH ₃	-85,8	5,2	4,4
SiH ₂ F ₂	-77.8			AsH ₃	-62,3	19	12,8
CO ₂	-78.5			GeH ₄	-88,5		2,26

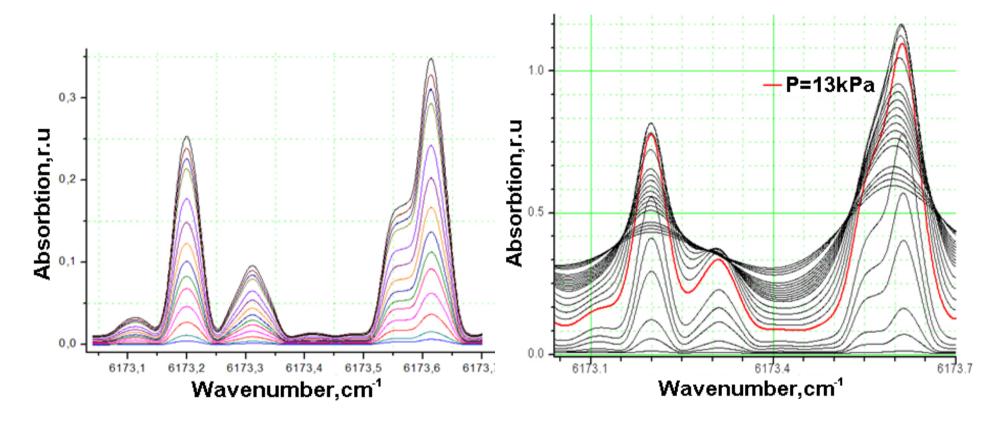
Boiling temperature (T_b) and separation factor (SF) of different impurities in SiH₄.

Volatile hydrides (blue) sources of electrically active impurities in Si (B, P, As) have physical – chemical properties close to SiH₄. As result it is difficult both to remove and to control them during rectification process. Ethylene - C_2H_4 (red) has physical – chemical properties even closer to SiH₄, separation factor close to 1. Hence, ethylene can be used as indicator of removing electrically active impurities during SiH₄ rectification.

Analytical line selection



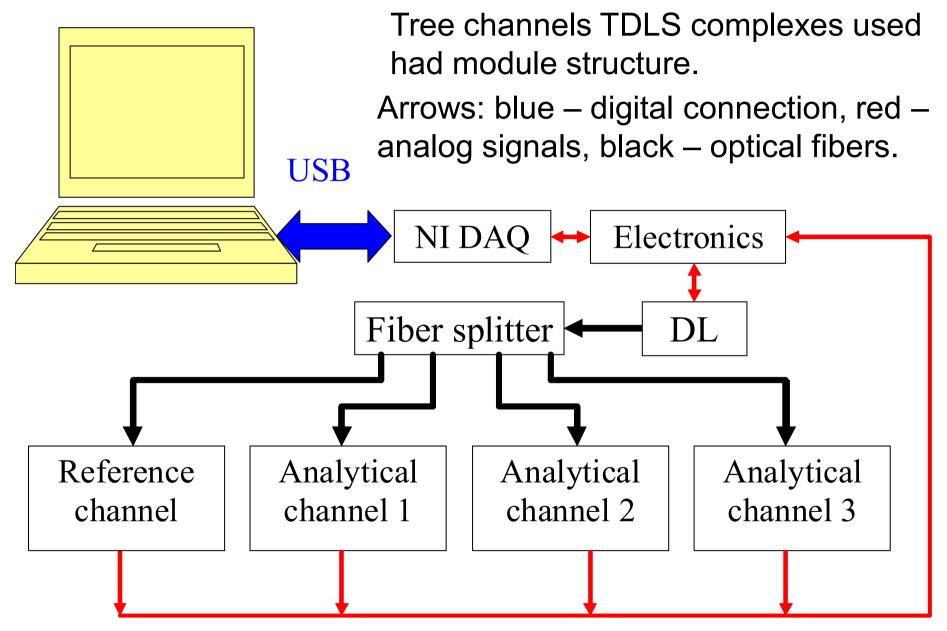
FTS ethylene spectrum in near IR.


Analytical spectral range was selected (blue).

At the beginning strongest line in selected spectral range was considered as analytical one. However, during preliminary experiments it was found that SiH₄ has also absorbance here.

Spectra of both C_2H_4 and SiH₄ were recorded by DL in use. Ethylene analytical line was selected having minority interference with SiH₄.

Optimal sample pressure determination



Pure ethylene absorbance spectra for P = 1 - 10 mBar.

Gas mixture ethylene : nitrogen = 5% spectra for P = 1 - 1000 mBar.

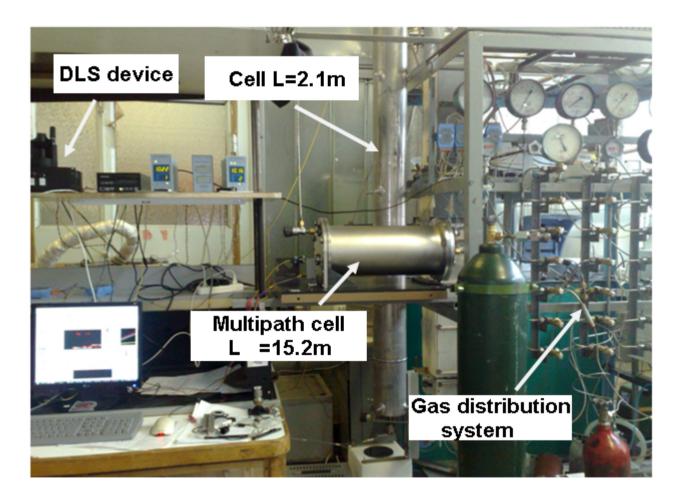
Optimal sample pressure was determined as 100 mBar.

TDLS complex block-scheme

TDLS complex view

Three channels TDLS complex view.

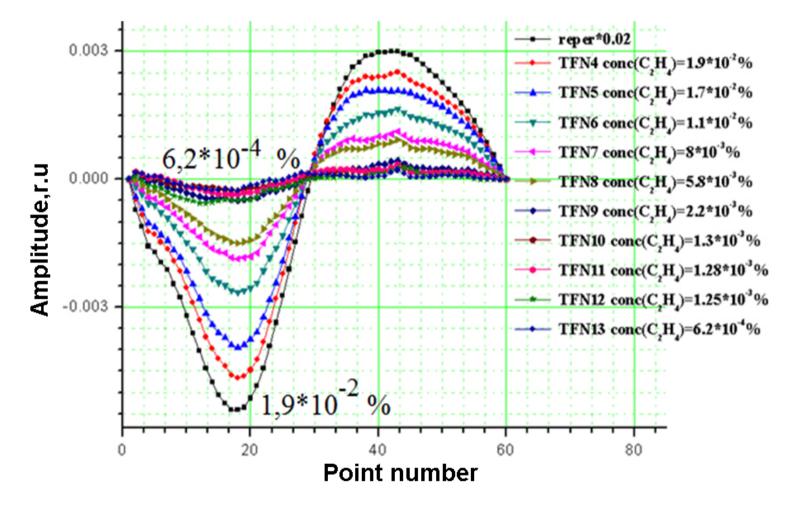
Two complexes were used to detect H_2O and CH_4 in NH_3 .


LF was directed to cells with L = 2 cm, L = 150 cm and multipath cell with = 15.2 m to measure CH_4 concentration.

HF was directed to cell with L = 150 cm to measure H_2O concentration. To remove atmosphere water absorption dry nitrogen flow was used.

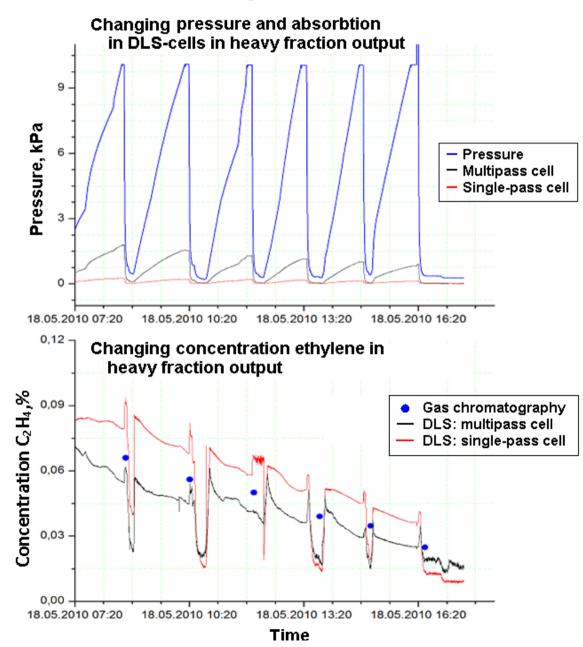
3 fiber outputs. In present Reference cell

DL case 2 outputs are in use 23 1 to 3 fiber splitter 3 PD inputs.


TDLS complex installation

TDLS complex to measure ethylene concentration during SiH_4 rectification process was installed in SIE "Salut" (NN).

Rectification HF was directed to two cells: single path cell (L = 2.1. m) and multipath cell (L = 15.2 m).


Minimum detectable concentration

Processed analytical signal for different ethylene concentrations in SiH₄.

Minimum detectable concentration was determined as 1 ppm close to instrument requirements.

Rectification process control

Silicon manufacture from SiH₄ obtained

Si manufacturing was performed in Chemistry of high purity materials institute of RAS (NN).

Si single crystal growing

Crystals parameters

Parameters of manufactured Si crystals as function of ethylene concentration in SiH_4 .

	Initial SiH ₄	Rectified SiH ₄
Ethylene content, % vol.	4,5·10 ⁻³	8.10-7
Specific resistance, Ohm /cm	(2÷4)·10 ⁻²	100÷200
Carriers concentration, cm ⁻³	10 ¹⁹	10 ¹³

Conclusion

- 1. Usage of ethylene monitoring in heavy fraction during SiH₄ rectification to control electro active impurities removing was proposed.
- 2. Analytical line was selected and investigated.
- 3. TDLS complex was developed and installed.
- 4. Minimum detectable concentration 1 ppm is close to the instrument requirements.
- 5. SiH_4 rectification using ethylene monitoring was performed.
- 6. Si crystals were manufactured from SiH_4 obtained.
- 7. Electrical parameters of manufactured crystals were measured.
- 8. Results obtained proved item #1.